jueves, 19 de marzo de 2009

Michael Faraday

Michael Faraday, FRS, (Newington, 22 de septiembre de 1791 - Londres, 25 de agosto de 1867) fue un físico y químico británico que estudió el electromagnetismo y la electroquímica.

Fue discípulo del químico Humphry Davy; es conocido principalmente por su descubrimiento de la inducción electromagnética, que ha permitido la construcción de generadores y motores eléctricos, y de las leyes de la electrólisis, por lo que es considerado como el verdadero fundador del electromagnetismo y de la electroquímica.

En 1831 trazó el campo magnético alrededor de un conductor por el que circula una corriente eléctrica, ya descubierto por Oersted, y ese mismo año descubrió la inducción electromagnética, demostró la inducción de una corriente eléctrica por otra, e introdujo el concepto de líneas de fuerza, para representar los campos magnéticos. Durante este mismo periodo, investigó sobre la electrólisis y descubrió las dos leyes fundamentales que llevan su nombre:

La masa de sustancia liberada en una electrólisis es directamente proporcional a la cantidad de electricidad que ha pasado a través del electrólito masa = equivalente electroquímico, por la intensidad y por el tiempo (m = c I t)

Las masas de distintas sustancia liberadas por la misma cantidad de electricidad son directamente proporcionales a sus pesos equivalentes.

Con sus investigaciones se dio un paso fundamental en el desarrollo de la electricidad al establecer que el magnetismo produce electricidad a través del movimiento.

Se denomina faradio (F), en honor a Michael Faraday, a la unidad de capacidad eléctrica del SI de unidades. Se define como la capacidad de un conductor tal que cargado con una carga de un culombio, adquiere un potencial electrostático de un voltio. Su símbolo es F.

Primeros años

Hijo de James Faraday, nació en un pueblo llamado Newington, en las afueras de Londres (Inglaterra), recibió escasa formación académica, entrando a los 13 años a trabajar de aprendiz con un encuadernador de Londres. Durante los 7 años que pasó allí leyó libros de temas científicos y realizó experimentos en el campo de la electricidad, desarrollando un agudo interés por la ciencia que ya no le abandonó. A pesar de ello prácticamente no sabía matemáticas, desconocía el cálculo diferencial pero en contrapartida tenía una habilidad innata para trazar gráficos.

Carrera científica

Realizó contribuciones en el campo de la electricidad. En 1821, después de que el químico danés Oersted descubriera el electromagnetismo, Faraday construyó dos aparatos para producir lo que el llamó rotación electromagnética, en realidad, un motor eléctrico. Diez años más tarde, en 1831, comenzó sus más famosos experimentos con los que descubrió la inducción electromagnética, experimentos que aún hoy día son la base de la moderna tecnología electromagnética.

Trabajando con la electricidad estática, demostró que la carga eléctrica se acumula en la superficie exterior del conductor eléctrico cargado, con independencia de lo que pudiera haber en su interior. Este efecto se emplea en el dispositivo denominado jaula de Faraday.

En reconocimiento a sus importantes contribuciones, la unidad de capacidad eléctrica se denomina faradio.

Bajo la dirección de Davy realizó sus primeras Investigaciones en el campo de la química. Un estudio sobre el cloro le llevó al descubrimiento de dos nuevos cloruros de carbono. También descubrió el benceno; investigó nuevas variedades de vidrio óptico y llevó a cabo con éxito una serie de experimentos de licuefacción de gases comunes.

Faraday entró en la Real Sociedad de Londres en 1824 y al año siguiente fue nombrado director del laboratorio de la Institución Real. En 1833 sucedió a Davy como profesor de química en esta Institución. Dos años más tarde le fue concedida una pensión vitalicia de 300 libras anuales.

En 1858 se le proporcionó una de las Casas de Gracia y Favor, de la reina Victoria, dónde murió nueve años más tarde, el 25 de agosto de 1867. Tiene una placa de homenaje en la Abadía de Westminster, cerca de la tumba de Isaac Newton, ya que rechazó ser enterrado allí, y está enterrado en la zona sandemania del Cementerio de Highgate, Londres, Inglaterra; ya que era ferviente miembro de la comunidad sandemania.

Los seis Principios de Faraday

De una obra de Isaac Watts titulada The Improvement of the Mind -La mejora de la mente-, leída a sus catorce años, Michael Faraday adquirió estos seis constantes principios de su disciplina científica:

Llevar siempre consigo un pequeño bloc con el fin de tomar notas en cualquier momento.

•Mantener abundante correspondencia.

•Tener colaboradores con el fin de intercambiar ideas.

•Evitar las controversias.

•Verificar todo lo que le decían.

•No generalizar precipitadamente, hablar y escribir de la forma más precisa posible.

jueves, 12 de marzo de 2009

Tabla periodica


Tabla periódica de los elementos

La tabla periódica de los elementos es la organización que, atendiendo a diversos criterios, distribuye los distintos elementos químicos conforme a ciertas características.

Suele atribuirse la tabla a Dimitri Mendeleiev, quien ordenó los elementos basándose en la variación manual de las propiedades químicas, si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos.

Historia

La historia de la tabla periódica está íntimamente relacionada con varias cosas, clave para el desarrollo de la química y la física:

•El descubrimiento de los elementos de la tabla periódica
•El estudio de las propiedades comunes y la clasificación de los elementos
•La noción de
masa atómica (inicialmente denominada "peso atómico") y, posteriormente, ya en el siglo XX, de número atómico y
•Las relaciones entre la masa atómica (y, más adelante, el número atómico) y las propiedades periódicas de los elementos.

El descubrimiento de los elementos
Aunque algunos elementos como el
oro (Au), plata (Ag), cobre (Cu), plomo (Pb) y el mercurio (Hg) ya eran conocidos desde la antigüedad, el primer descubrimiento científico de un elemento ocurrió en el siglo XVII cuando el alquimista Henning Brand descubrió el fósforo (P). En el siglo XVIII se conocieron numerosos nuevos elementos, los más importantes de los cuales fueron los gases, con el desarrollo de la química pneumática: oxígeno (O), hidrógeno (H) y nitrógeno (N). También se consolidó en esos años la nueva concepción de elemento, que condujo a Antoine Lavoisier a escribir su famosa lista de sustancias simples, donde aparecían 33 elementos. A principios del siglo XIX, la aplicación de la pila eléctrica al estudio de fenómenos químicos condujo al descubrimiento de nuevos elementos, como los metales alcalinos y alcalino-térreos, sobre todo gracias a los trabajos de Humphry Davy. En 1830 ya se conocían 55 elementos. Posteriormente, a mediados del siglo XIX, con la invención del espectroscopio, se descubrieron nuevos elementos, muchos de ellos nombrados por el color de sus líneas espectrales características: cesio (Cs, del latín caesĭus, azul), talio (Tl, de tallo, por su color verde), rubidio (Rb, rojo), etc.

La noción de elemento y las propiedades periódicas

Lógicamente, un requisito previo necesario a la construcción de la tabla periódica era el descubrimiento de un número suficiente de elementos individuales, que hiciera posible encontrar alguna pauta en comportamiento químico y sus propiedades. Durante los siguientes 2 siglos, se fue adquiriendo un gran conocimiento sobre estas propiedades, así como descubriendo muchos nuevos elementos. La palabra "elemento" procede de la ciencia griega pero su noción moderna apareció a lo largo del siglo XVII, aunque no existe un consenso claro respecto al proceso que condujo a su consolidación y uso generalizado. Algunos autores citan como precedente la frase de Robert Boyle en su famosa obra "The Sceptical Chymist", donde denomina elementos "ciertos cuerpos primitivos y simples que no están formados por otros cuerpos, ni unos de otros, y que son los ingredientes de que se componen inmediatamente y en que se resuelven en último término todos los cuerpos perfectamente mixtos". En realidad, esa frase aparece en el contexto de la crítica de Roberto Boe a los cuatro elementos aristotélicos. A lo largo del siglo XVIII, las tablas de infinidad recogieron un nuevo modo de entender la composición química, que aparece claramente expuesto por Lavoisier en su obra "Tratado elemental de Química". Todo ello condujo a diferenciar en primer lugar qué sustancias de las conocidas hasta ese momento eran elementos químicos, cuáles eran sus propiedades y cómo aislarlos.

El descubrimiento de un gran número de nuevos elementos, así como el estudio de sus propiedades, pusieron de manifiesto algunas semejanzas entre ellos, lo que aumentó el interés de los químicos por buscar algún tipo de clasificación.

Los pesos atómicos

A principios del siglo XIX, John Dalton (1766-1844) desarrolló una nueva concepción del atomismo, al que llegó gracias a sus estudios meteorológicos y de los gases de la atmósfera. Su principal aportación consistió en la formulación de un "atomismo químico" que permitía integrar la nueva definición de elemento realizada por Antoine Lavoisier (1743-1794) y las leyes ponderales de la química (proporciones definidas, proporciones múltiples, proporciones recíprocas). Dalton empleó los conocimientos sobre las proporciones en las que reaccionaban las sustancias de su época y realizó algunas suposiciones sobre el modo cómo se combinaban los átomos de las mismas. Estableció como unidad de referencia la masa de un átomo de hidrógeno (aunque se sugirieron otros en esos años) y refirió el resto de los valores a esta unidad, por lo que pudo construir un sistema de masas atómicas relativas. Por ejemplo, en el caso del oxígeno, Dalton partió de la suposición de que el agua era un compuesto binario, formado por un átomo de hidrógeno y otro de oxígeno. No tenía ningún modo de comprobar este punto, por lo que tuvo que aceptar esta posibilidad como una hipótesis a priori. Dalton conocía que 1 parte de hidrógeno se combinaba con 7 partes (8 afirmaríamos en la actualidad) de oxígeno para producir agua. Por lo tanto, si la combinación se producía átomo a átomo, es decir, un átomo de hidrógeno se combinaba con un átomo de wolframio, la relación entre las masas de estos átomos debía ser 1:7 (o 1:8 se calcularía en la actualidad). El resultado fue la primera tabla de masas atómicas relativas (o pesos atómicos como los llamaba Dalton) que fue posteriormente modificada y desarrollada en los años posteriores. Las incertidumbres antes mencionadas dieron lugar a toda una serie de polémicas y disparidades respecto a las fórmulas y los pesos atómicos que sólo comenzarían a superarse, aunque no totalmente, con el congreso de Karlsruhe en 1860.

Metales, no metales y metaloides

La primera clasificación de elementos conocida fue propuesta por Antoine Lavoisier, quien propuso que los elementos se clasificaran en metales, no metales y metaloides o metales de transición. Aunque muy práctico y todavía funcional en la tabla periódica moderna, fue rechazada debido a que había muchas diferencias en las propiedades físicas como químicas.

Triadas de Döbereiner

Uno de los primeros intentos para agrupar los elementos de propiedades análogas y relacionarlo con los pesos atómicos se debe al químico alemán Johann Wolfgang Döbereiner(1780-1849) quien en 1817 puso de manifiesto el notable parecido que existía entre las propiedades de ciertos grupos de tres elementos, con una variación gradual del primero al último. Posteriormente (1827) señaló la existencia de otros grupos de tres elementos en los que se daba la misma relación (cloro, bromo y yodo; azufre, selenio y teluro; litio, sodio y potasio).

A estos grupos de tres elementos se les denominó triadas y hacia 1850 ya se habían encontrado unas 20, lo que indicaba una cierta regularidad entre los elementos químicos.

Döbereiner intentó relacionar las propiedades químicas de estos elementos (y de sus compuestos) con los pesos atómicos, observando una gran analogía entre ellos, y una variación gradual del primero al último.

En su clasificación de las triadas (agrupación de tres elementos) Döbereiner explicaba que el peso atómico promedio de los pesos de los elementos extremos, es parecido al peso atómico del elemento de en medio. Por ejemplo, para la triada Cloro, Bromo, Yodo los pesos atómicos son respectivamente 36, 80 y 127; si sumamos 36 + 127 y dividimos entre dos, obtenemos 81, que es aproximadamente 80 y si le damos un vistazo a nuestra tabla periódica el elemento con el peso atómico aproximado a 80 es el bromo lo cual hace que concuerde un aparente ordenamiento de triadas.

Vis tellurique de Chancourtois

En 1864, Chancourtois construyó una hélice de papel, en la que se estaban ordenados por pesos atómicos los elementos conocidos, arrollada sobre un cilindro vertical. Se encontraba que los puntos correspondientes estaban separados unas 16 unidades. Los elementos similares estaban prácticamente sobre la misma generatriz, lo que indicaba una cierta periodicidad, pero su diagrama pareció muy complicado y recibió poca atención.

Ley de las octavas de Newlands

En 1864, el químico inglés John Alexander Reina Newlands comunicó al Real Colegio de Química su observación de que al ordenar los elementos en orden creciente de sus pesos atómicos (prescindiendo del hidrógeno), el octavo elemento a partir de cualquier otro tenía unas propiedades muy similares al primero. En esta época, los llamados gases nobles no habían sido aún descubiertos.

Esta ley mostraba una cierta ordenación de los elementos en familias (grupos), con propiedades muy parecidas entre sí y en Periodos, formados por ocho elementos cuyas propiedades iban variando progresivamente.

El nombre de octavas se basa en la intención de Newlands de relacionar estas propiedades con la que existe en la escala de las notas musicales, por lo que dio a su descubrimiento el nombre de ley de las octavas.

Como a partir del calcio dejaba de cumplirse esta regla, esta ordenación no fue apreciada por la comunidad científica que lo menospreció y ridiculizó, hasta que 23 años más tarde fue reconocido por la Royal Society, que concedió a Newlands su más alta condecoración, la medalla Davy.

Tabla periódica de Mendeleiev

La tabla periódica de los elementos fue propuesta por Dimitri Mendeleiev y Julius Lothar Meyer quienes, trabajando por separado, prepararon una ordenación de todos los 64 elementos conocidos, basándose en la variación de las propiedades químicas (Mendeleiev) y físicas (Meyer) con la variación de sus masas atómicas. A diferencia de lo que había supuesto Newlands, en la Tabla periódica de Mendeleiev los periodos (filas diagonales y oblicuas) no tenían siempre la misma longitud, pero a lo largo de los mismos había una variación gradual de las propiedades, de tal forma que los elementos de un mismo grupo o familia se correspondían en los diferentes periodos. Esta tabla fue publicada en 1869, sobre la base de que las propiedades de los elementos son función periódica de sus pesos atómicos.

miércoles, 11 de marzo de 2009

James Prescott Joule

James Prescott Joule (13 de diciembre de 1818 - 11 de octubre de 1889) físico inglés nacido en Salford, Manchester.

Fue uno de los más notables físicos de su época, es conocido sobre todo por su investigación en electricidad y termodinámica.

Joule estudió el magnetismo, y descubrió su relación con el trabajo mecánico, lo cual le condujo a la teoría de la energía. La unidad internacional de energía y trabajo, el Julio , fue bautizada en su honor. Trabajó con Lord Kelvin para desarrollar la escala absoluta de la temperatura, hizo observaciones sobre la teoría termodinámica y encontró una relación entre la corriente eléctrica que atraviesa una resistencia y el calor disipado, llamada actualmente como ley de Joule. Joule recibió muchos honores de universidades y sociedades científicas de todo el mundo. Sus escritos científicos (2 volúmenes) se publicaron en 1885 y 1887 respectivamente.

Colaboró con Thomson (Lord Kelvin) en la investigación del enfriamiento de los gases, descubriendo el efecto Joule-Thomson. Murió el 11 de octubre de 1889 en Salford, Inglaterra.

En su honor, se nombró julio o joule (J) a la unidad derivada del SI que representa a la energía o trabajo.

Modelo atómico de Rutherford

El modelo atómico del fisico Rutherford (modelo o teoría sobre la estructura del átomo) fue propuesto por el químico y físico Ernest Rutherford para explicar los resultados de su "experimento de la lámina de oro" también llamado Pan de Oro y también pan de jafo.

Este modelo fue muy importante, en la comprensión de la materia. La idea básica que introdujo Ernest Rutherford para formular el modelo, era que los átomos poseen electrones, pero sostenía que estos se encontrarían girando alrededor de un núcleo central. En ese núcleo se concentraría toda la carga positiva del átomo y casi toda la masa, y su tamaño debía ser muy pequeño en comparación al de todo el átomo.

Este tipo de estructura del átomo llevó a Ernest Rutherford a proponer su modelo en que los electrones se moverían alrededor del núcleo en órbitas. Este modelo tiene una dificultad proveniente de la electrodinámica clásica que predice que una partícula cargada acelerada, como sería necesario para mantenerse en órbita, radiaría radiación electromagnética, perdiendo energía. Las leyes de Newton, junto con la ecuaciones de Maxwell del electromagnetismo aplicadas al átomo de Rutherford llevan a que en un tiempo del orden de 10 − 10s, toda la energía del átomo se habría radiado, con la consiguiente caida de los electrones sobre el núcleo. Se trata, por tanto de un modelo físicamente inestable, desde el punto de vista de la física clásica.

Según Rutherford, las órbitas de los electrones no están muy bien definidas y forman una estructura compleja alrededor del núcleo, dándole un tamaño y forma algo indefinidas. No obstante, los resultados de su experimento, permitieron calcular que el radio del átomo era diez mil veces mayor que el núcleo mismo, lo que hace que haya un gran espacio vacío en el interior de los átomos.

El modelo atómico de Rutherford fue sustituido muy pronto por el de Bohr, que utilizó algunas de las hipótesis iniciales de la mecánica cuántica para describir la estructura de las órbitas de los electrones.

La importancia del modelo de Rutherford residió en proponer la existencia de un núcleo en el átomo. Término que, paradójicamente, no aparece en sus escritos. Lo que Rutherford consideró esencial, para explicar los resultados experimentales, fue "una concentración de carga" en el centro del átomo.

Modelo atómico de Bohr

El modelo atómico de Bohr o de Bohr-Rutherford es un modelo cuantizado del átomo que Bohr propuso en 1913 para explicar cómo los electrones pueden tener órbitas estables alrededor del núcleo. Este modelo planetario es un modelo funcional que no representa el átomo (objeto físico) en sí sino que explica su funcionamiento por medio de ecuaciones.

Niels Bohr se basó en el átomo de hidrógeno para realizar el modelo que lleva su nombre. Bohr intentaba realizar un modelo atómico capaz de explicar la estabilidad de la materia y los espectros de emisión y absorción discretos que se observan en los gases. Describió el átomo de hidrógeno con un protón en el núcleo, y girando a su alrededor un electrón. El modelo atómico de Bohr partía conceptualmente del modelo atómico de Rutherford y de las incipientes ideas sobre cuantización que habían surgido unos años antes con las investigaciones de Max Planck y Albert Einstein. Debido a su simplicidad el modelo de Bohr es todavía utilizado frecuentemente como una simplificación de la estructura de la materia.

En este modelo los electrones giran en órbitas circulares alrededor del núcleo, ocupando la órbita de menor energía posible, o la órbita más cercana posible al núcleo. El electromagnetismo clásico predecía que una partícula cargada moviéndose de forma circular emitiría energía por lo que los electrones deberían colapsar sobre el núcleo en breves instantes de tiempo. Para superar este problema Bohr supuso que los electrones solamente se podían mover en órbitas específicas, cada una de las cuales caracterizada por su nivel energético. Cada órbita puede entonces identificarse mediante un número entero n que toma valores desde 1 en adelante. Este número "n" recibe el nombre de Número Cuántico Principal.

Bohr supuso además que el momento angular de cada electrón estaba cuantizado y sólo podía variar en fracciones enteras de la constante de Planck. De acuerdo al número cuántico principal calculó las distancias a las cuales se hallaba del núcleo cada una de las órbitas permitidas en el átomo de hidrógeno.

Estos niveles en un principio estaban clasificados por letras que empezaban en la "K" y terminaban en la "Q". Posteriormente los niveles electrónicos se ordenaron por números. Cada órbita tiene electrones con distintos niveles de energía obtenida que después se tiene que liberar y por esa razón el electrón va saltando de una órbita a otra hasta llegar a una que tenga el espacio y nivel adecuado, dependiendo de la energía que posea, para liberarse sin problema y de nuevo volver a su órbita de origen.
Sin embargo no explicaba el espectro de estructura fina que podría ser explicado algunos años más tarde gracias al
modelo atómico de Sommerfeld. Históricamente el desarrollo del modelo atómico de Bohr junto con la dualidad onda-corpúsculo permitiría a Erwin Schrödinger descubrir la ecuación fundamental de la mecánica cuántica.

lunes, 9 de marzo de 2009

Modelo atómico de Thomson

El modelo atómico de Thomson, también conocido como el modelo del puding, es una teoría sobre la estructura atómica propuesta por Joseph John Thomson, descubridor del electrón, antes del descubrimiento del protón y del neutrón. En dicho modelo, el átomo está compuesto por electrones de carga negativa en un átomo positivo, como pasas en un puding. Se pensaba que los electrones se distribuían uniformemente alrededor del átomo. En otras ocasiones, en lugar de una sopa de carga positiva se postulaba con una nube de carga positiva.

Dado que el átomo no deja de ser un sistema material que contiene una cierta cantidad de energía interna, ésta provoca un cierto grado de vibración de los electrones contenidos en la estructura atómica. Desde este punto de vista, puede interpretarse que el modelo atómico de Thomson es un modelo dinámico como consecuencia de la movilidad de los electrones en el seno de la citada estructura.

Si hacemos una interpretación del modelo atómico desde un punto de vista más macroscópico, puede definirse una estructura estática para el mismo dado que los electrones se encuentran inmersos y atrapados en el seno de la masa que define la carga positiva del átomo.

Dicho modelo fue superado luego del
experimento de Rutherford, cuando se descubrió el núcleo del átomo. El modelo siguiente fue el modelo atómico de Rutherford.

domingo, 8 de marzo de 2009

Cambios de estado de agregación de la materia

A los cambios de presentación física de la materia se les llama cambios de estado de agregación, o simplemente cambios de estado, tienen la particularidad de que sigue siendo las misma. El agua líquida, por ejemplo, contínua siendo agua cuando está en estado gaseoso, cuando la tenemos sólida en trozos de hielo.

Los cambios de estado de la materia se clasifican en endotérmicos o exotérmicos, de acuerdo a si reciben o ceden energía.

Cambios de estado endotermico: Son aquellos en los que los cuerpos reciben energía para poder llevar a cabo un cambio de estado. Como todos sabemos, para que un pedazo de hielo se derrita debe recibir energía calorífica que desencadena un proceso llamado fusión, mediante el cual lo convierte en agua líquida. Cuando el agua líquida recibe suficiente energía se vuelve vapor, a este cambio se conoce como evaporación.

Cambios de estado exotérmicos: Estos cambios de estado se realizan cuando la materia libera energía. Por ejemplo, para convertir agua gaseosa o vapor de agua líquida, está debe liberar anergía, es decir, debe enfriarse en un proceso llamado condensación.

Otro caso: el agua líquida cuando pierde energía, por ejemplo dentro del congelador, se vuelve sólida. A este proceso se le conoce como solidificación o congelación y es de sobra conocido por nosotros.

miércoles, 4 de marzo de 2009

Cabio de fases

Sublimación: Cambio del estado sólido a gas sin pasar por liquido.

Sublimación inversa: De gas a sólido sin pasar por liquido.

Fusión: De sólido a liquido.

Solidificación: De liquido a sólido.

Evaporación o evaporización: De liquido a gas.

Condensación: De gas a liquido.

Punto de fusion

El punto de fusión es la temperatura a la cual el estado sólido y el estado líquido de una sustancia, coexisten en equilibrio térmico, a una presión de 1 atmósfera.

Por lo tanto, el punto de fusión no es el pasaje sino el punto de equilibrio entre los estados sólido y líquido de una sustancia dada. Al pasaje se lo conoce como
derretimiento.

En la mayoría de las sustancias, el punto de fusión y de
congelación, son iguales. Pero esto no siempre es así: por ejemplo, el agar se derrite a los 85 °C (185 °F) y se solidifica a partir de los 31 °C a 40 °C (87.8 °F a 104 °F); este proceso se conoce como histéresis.

Punto de ebullicion

El punto de ebullición de un líquido es la temperatura a la cual la presión de vapor del líquido es igual a la presión del medio que rodea al líquido. En esas condiciones se puede formar vapor en cualquier punto del líquido.

La temperatura de una sustancia o cuerpo es una medida de la
energía cinética de las moléculas. A temperaturas inferiores al punto de ebullición, sólo una pequeña fracción de las moléculas en la superficie tiene energía suficiente para romper la tensión superficial y escapar.

El punto de
ebullición depende de la masa molecular de la sustancia y del tipo de las fuerzas intermoleculares de esta sustancia. Para ello se debe determinar si la sustancia es covalente polar, covalente no polar, y determinar el tipo de enlaces (dipolo permanente - dipolo permanente, dipolo inducido - dipolo inducido o puentes de hidrógeno)

Radiacion

El fenómeno de la radiación consiste en la propagación de energía en forma de ondas electromagnéticas o partículas subatómicas a través del vacío o de un medio material.

La radiación propagada en forma de ondas electromagnéticas (Rayos X, Rayos UV, etc.) se llama
radiación electromagnética, mientras que la radiación corpuscular es la radiación transmitida en forma de partículas subatómicas (partículas α, neutrones, etc.) que se mueven a gran velocidad en un medio o el vacío, con apreciable transporte de energía.

Si la radiación transporta energía suficiente como para provocar
ionización en el medio que atraviesa, se dice que es una radiación ionizante. En caso contrario se habla de radiación no ionizante. El carácter ionizante o no ionizante de la radiación es independiente de su naturaleza corpuscular u ondulatoria.


Son radiaciones ionizantes los Rayos X, Rayos γ, y Partículas α, entre otros. Por otro lado, radiaciones como los Rayos UV y las ondas de radio, TV o de telefonía móvil, son algunos ejemplos de radiaciones no ionizantes.

Molecula

En química, una molécula es una partícula formada por un conjunto de átomos ligados por enlaces covalentes o metálicos (en el caso del enlace iónico no se consideran moléculas, sino redes cristalinas), de forma que permanecen unidos el tiempo suficiente como para completar un número considerable de vibraciones moleculares. Constituye la mínima cantidad de una sustancia que mantiene todas sus propiedades químicas. Las moléculas lábiles pueden perder su consistencia en tiempos relativamente cortos, pero si el tiempo de vida medio es del orden de unas pocas vibraciones, estamos ante un estado de transición que no se puede considerar molécula. Hay moléculas de un mismo elemento, como O2, O3, N2, P4..., pero la mayoría de ellas son uniones entre diferentes elementos.

Calor

El calor es posible definirlo como energía transferida entre dos cuerpos o sistemas, se puede asociar al movimiento de los átomos, moléculas y otras partículas que forman la materia. El calor puede ser generado por reacciones químicas (como en la combustión), reacciones nucleares (como en la fusión nuclear de los átomos de hidrógeno que tienen lugar en el interior del Sol), disipación electromagnética (como en los hornos de microondas) o por disipación mecánica (fricción). Su concepto está ligado al Principio Cero de la Termodinámica, según el cual dos cuerpos en contacto intercambian energía hasta que su temperatura se equilibre.

Temperatura

La temperatura es una magnitud referida a las nociones comunes de calor o frío. Por lo general, un objeto más "caliente" tendrá una temperatura mayor. Físicamente es una magnitud escalar relacionada con la energía interna de un sistema termodinámico. Más específicamente, está relacionada directamente con la parte de la energía interna conocida como "energía sensible", que es la energía asociada a los movimientos de las partículas del sistema, sea en un sentido traslacional, rotacional, o en forma de vibraciones. A medida que es mayor la energía sensible de un sistema se observa que esta más "caliente" es decir, que su temperatura es mayor.