jueves, 14 de mayo de 2009

Electrón

El electrón (Del griego ελεκτρον, ámbar), comúnmente representado por el símbolo: e−, es una partícula subatómica o partícula elemental de tipo fermiónico. En un átomo los electrones rodean el núcleo, compuesto únicamente de protones y neutrones.

Los electrones tienen una masa pequeña respecto al protón, y su movimiento genera corriente eléctrica en la mayoría de los metales. Estas partículas desempeñan un papel primordial en la química ya que definen las atracciones con otros átomos.

Historia y descubrimiento del electrón

La existencia del electrón fue postulada por G. Johnstone Stoney, como una unidad de carga en el campo de la electroquímica. El electrón fue descubierto por Joseph John Thomson en 1897 en el Laboratorio Cavendish de la Universidad de Cambridge, mientras estudiaba el comportamiento de los rayos catódicos. Influido por el trabajo de Maxwell y el descubrimiento de los rayos X, dedujo que en el tubo de rayos catódicos existían unas partículas con carga negativa que denominó corpúsculos. Aunque Stoney había propuesto la existencia del electrón, fue Thomson quien descubrió su carácter de partícula fundamental. Para confirmar la existencia del electrón era necesario medir sus propiedades, en particular su carga eléctrica. Este objetivo fue alcanzado por Millikan en el célebre experimento de la gota de aceite realizado en 1909.
George Paget Thomson, hijo de J.J. Thomson, demostró la naturaleza ondulatoria del electrón al lograr difractar los electrones al atravesar una lámina de metal. Dicho experimento condujo a la aparición de un patrón de interferencia como el que se obtiene en la difracción de ondas como la luz, probando la dualidad onda corpúsculo la mecánica cuántica postulada en 1926 por De Broglie.


Este descubrimiento le valió el Premio Nobel de Física de 1937.


El espín del electrón se observó por vez primera en el experimento de Stern y Gerlach. Su carga eléctrica puede medirse directamente con un electrómetro y la corriente generada por su movimiento con un galvanómetro. Seis años antes de los descubrimientos de Thomson, el físico irlandés Stoney había propuesto la existencia de estas partículas, pero no lo había podido comprobar. Como asumía que la partícula tenía carga eléctrica, la denominó electrón. Posteriormente, otros científicos demostraron experimentalmente que estas partículas o electrones, tienen una masa 2000 veces menor que el átomo de hidrógeno.

Corriente directa

La corriente directa (CD) o corriente continua (CC) es aquella cuyas cargas eléctricas o electrones fluyen siempre en el mismo sentido en un circuito eléctrico cerrado, moviéndose del polo negativo hacia el polo positivo de una fuente de fuerza electromotriz (FEM), tal como ocurre en las baterías, las dinamos o en cualquier otra fuente generadora de ese tipo de corriente eléctrica.





Fuentes suministradoras de corriente directa o continua. A la izquierda, una batería de las comúnmente utilizada en los coches y todo tipo de vehículo motorizado. A la derecha, pilas de amplio uso, lo mismo en linternas que en aparatos y dispositivos eléctricos y electrónicos.

Es importante conocer que ni las baterías, ni los generadores, ni ningún otro dispositivo similar crea cargas eléctricas pues, de hecho, todos los elementos conocidos en la naturaleza las contienen, pero para establecer el flujo en forma de corriente eléctrica es necesario ponerlas en movimiento.


El movimiento de las cargas eléctricas se asemeja al de las moléculas de un líquido, cuando al ser impulsadas por una bomba circulan a través de la tubería de un circuito hidráulico cerrado.
Las cargas eléctricas se pueden comparar con el líquido contenido en la tubería de una instalación hidráulica. Si la función de una bomba hidráulica es poner en movimiento el líquido contenido en una tubería, la función de la tensión o voltaje que proporciona la fuente de fuerza electromotriz (FEM) es, precisamente, bombear o poner en movimiento las cargas contenidas en el cable conductor del circuito eléctrico. Los elementos o materiales que mejor permiten el flujo de cargas eléctricas son los metales y reciben el nombre de “conductores”.

miércoles, 13 de mayo de 2009

Corriente alterna

Se denomina corriente alterna (abreviada CA en español y AC en inglés, de Alternating Current) a la corriente eléctrica en la que la magnitud y dirección varían cíclicamente. La forma de onda de la corriente alterna más comúnmente utilizada es la de una onda sinusoidal (figura 1), puesto que se consigue una transmisión más eficiente de la energía. Sin embargo, en ciertas aplicaciones se utilizan otras formas de onda periódicas, tales como la triangular o la cuadrada.
Utilizada genéricamente, la CA se refiere a la forma en la cual la electricidad llega a los hogares y a las empresas. Sin embargo, las señales de
audio y de radio transmitidas por los cables eléctricos, son también ejemplos de corriente alterna. En estos usos, el fin más importante suele ser la transmisión y recuperación de la información codificada (o modulada) sobre la señal de la CA.

Historia

En el año 1882 el físico, matemático, inventor e ingeniero Nikola Tesla, diseñó y construyó el primer motor de inducción de CA. Posteriormente el físico William Stanley, reutilizó, en 1885, el principio de inducción para transferir la CA entre dos circuitos eléctricamente aislados. La idea central fue la de enrollar un par de bobinas en una base de hierro común, denominada bobina de inducción. De este modo se obtuvo lo que sería el precursor del actual transformador. El sistema usado hoy en día fue ideado fundamentalmente por Nikola Tesla; la distribución de la corriente alterna fue comercializada por George Westinghouse. Otros que contribuyeron en el desarrollo y mejora de este sistema fueron Lucien Gaulard, John Gibbs y Oliver Shallenger entre los años 1881 y 1889. La corriente alterna superó las limitaciones que aparecían al emplear la corriente continua (CC), el cual es un sistema ineficiente para la distribución de energía a gran escala debido a problemas en la transmisión de potencia, comercializado en su día con gran agresividad por Thomas Edison.

La primera transmisión interurbana de la corriente alterna ocurrió en 1891, cerca de Telluride, Colorado, a la que siguió algunos meses más tarde otra en Alemania. A pesar de las notorias ventajas de la CA frente a la CC, Thomas Edison siguió abogando fuertemente por el uso de la corriente continua, de la que poseía numerosas patentes (véase la guerra de las corrientes). De hecho, atacó duramente a Nikola Tesla y a George Westinghouse, promotores de la corriente alterna, a pesar de lo cual ésta se acabó por imponer. Así, utilizando corriente alterna, Charles Proteus Steinmetz, de General Electric, pudo solucionar muchos de los problemas asociados a la producción y transmisión eléctrica, lo cual provocó al fin la derrota de Edison en la batalla de las corrientes, siendo su vencedor George Westinghouse, y en menor medida, Nikola Tesla.

Corriente electrica

La corriente eléctrica es el flujo de carga por unidad de tiempo que recorre un material. Se debe a un movimiento de los electrones en el interior del material. Esta se mide en amperios y se indica con el símbolo A. Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético.

Históricamente, la corriente eléctrica se definió como un flujo de cargas positivas y se fijó el sentido convencional de circulación de la corriente como un flujo de cargas desde el polo positivo al negativo y sin embargo posteriormente se observó, gracias al efecto Hall, que en los metales los portadores de carga son negativos, estos son los electrones, los cuales fluyen en sentido contrario al convencional. En resultas, el sentido convencional y el real son ciertos en tanto que los electrones fluyen desde el polo positivo hasta llegar al negativo (sentido real), cosa que no contradice que dicho movimiento se inicia al lado del polo positivo donde el primer electrón se ve atraido por dicho polo creando un hueco para ser cubierto por otro electrón del siguiente átomo y así sucesivamente hasta llegar al polo negativo (sentido convencional) es decir la corriente eléctrica es el paso de electrones desde el polo negativo al positivo comenzando dicha progresión en el polo positivo.

En el siglo XVIII cuando se hicieron los primeros experimentos con electricidad, solo se disponía de carga eléctrica generada por frotamiento o por inducción. Se logró, por primera vez, en 1800 tener un movimiento constante de carga cuando el físico italiano Alessandro Volta inventó, la primera pila eléctrica.

El instrumento usado para medir la intensidad de la corriente eléctrica es el galvanómetro que, calibrado en amperios, se llama amperímetro, colocado en serie con el conductor cuya intensidad se desea medir.

martes, 12 de mayo de 2009

Ondas

En física, una onda es una propagación de una perturbación de alguna propiedad de un medio, por ejemplo, densidad, presión, campo eléctrico o campo magnético, que se propaga a través del espacio transportando energía. El medio perturbado puede ser de naturaleza diversa como aire, agua, un trozo de metal, el espacio o el vacío.



La propiedad del medio en la que se observa la particularidad se expresa como una función tanto de la posición como del tiempo:





Matemáticamente se dice que dicha función es una onda si verifica la ecuación de ondas:





donde v es la velocidad de propagación de la onda. Por ejemplo, ciertas perturbaciones de la presión de un medio, llamadas sonido, verifican la ecuación anterior, aunque algunas ecuaciones no lineales también tienen soluciones ondulatorias, por ejemplo, un solitón.


Definiciones

Una vibración puede ser definida como un movimiento de ida y vuelta alrededor de un punto de referencia. Sin embargo, definir las características necesarias y suficientes que caracterizan un fenómeno como onda es, como mínimo, algo flexible. El término suele ser entendido intuitivamente como el transporte de pertubaciones en el espacio, donde no se considera el espacio como un todo sino como un medio en el que pueden producirse y propagarse dichas perturbaciones a través de él. En una onda, la energía de una vibración se va alejando de la fuente en forma de una perturbación que se propaga en el medio circundante (Hall, 1980: 8). Sin embargo, esta noción es problemática en casos como una onda estacionaria (por ejemplo, una onda en una cuerda bajo ciertas condiciones) donde la energía se propaga en ambas direcciones por igual, o para ondas electromagnéticas/luminosas en el vacío, donde el concepto de medio no puede ser aplicado.
Por tales razones, la teoría de ondas se conforma como una característica rama de la física que se ocupa de las propiedades de los fenómenos ondulatorios independientemente de cual sea su origen físico (Ostrovsky y Potapov, 1999). Una peculiaridad de estos fenómenos ondulatorios es que a pesar de que el estudio de sus características no depende del tipo de onda en cuestión, los distintos orígenes físicos que provocan su aparición les confieren propiedades muy particuales que las distinguen de unos fenómenos a otros. Por ejemplo, la acústica se diferencia de la óptica en que las ondas sonoras están relacionadas con aspectos más mecánicos que las ondas electromagnéticas (que son las que gobiernan los fenómenos ópticos). Conceptos tales como masa, cantidad de movimiento, inercia o elasticidad son conceptos importantes para describir procesos de ondas sonoras, a diferencia de en las ópticas, donde estas no tienen una especial relevancia. Por lo tanto, las diferencias en el origen o naturaleza de las ondas producen ciertas propiedades que caracterizan cada onda, manifestando distintos efectos en el medio en que se propagan (por ejemplo, en el caso del aire: vórtices, presión de radiación, ondas de choque, etc. En el caso de los sólidos: Dispersión, etc.


Características

Las ondas periódicas están caracterizadas por crestas y valles, y usualmente es categorizada como longitudinal o transversal. Una onda transversal son aquellas con las vibraciones perpendiculares a la dirección de propagación de la onda; ejemplos incluyen ondas en una cuerda y ondas electromagnéticas. Ondas longitudinales son aquellas con vibraciones paralelas en la dirección de la propagación de las ondas; ejemplos incluyen ondas sonoras.
Cuando un objeto corte hacia arriba y abajo en una onda en un estanque, experimenta una trayectoria orbital porque las ondas no son simples ondas transversales sinusoidales.
Ondas en la superficie de una cuba son realmente una combinación de ondas transversales y longitudinales; por lo tanto, los puntos en la superficie siguen caminos orbitales.
Todas las ondas tiene un comportamiento común bajo un número de situaciones estándar. Todas las ondas pueden experimentar las siguientes:
Difracción - Ocurre cuando una onda al topar con el borde de un obstáculo deja de ir en línea recta para rodearlo.
Efecto Doppler - Efecto debido al movimiento relativo entre la fuente emisora de las ondas y el receptor de las mismas.
Interferencia - Ocurre cuando dos ondas se combinan al encontrarse en el mismo punto del espacio.
Reflexión - Ocurre cuando una onda, al encontrarse con un nuevo medio que no puede atravesar, cambia de dirección.
Refracción - Ocurre cuando una onda cambia de dirección al entrar en un nuevo medio en el que viaja a distinta velocidad.
Onda de choque - Ocurre cuando varias ondas que viajan en un medio se superponen formando un cono.


Polarización

Una onda es polarizada, si solo puede oscilar en una dirección. La polarización de una onda transversal describe la dirección de la oscilación, en el plano perpendicular a la dirección del viaje. Ondas longitudinales tales como ondas sonoras no exhiben polarización, porque para estas ondas la dirección de oscilación es a lo largo de la dirección de viaje. Una onda puede ser polarizada usando un filtro polarizador.


Ejemplos

Ejemplos de ondas:

Olas, que son perturbaciones que se propagan por el agua.
Ondas de radio, microondas, ondas infrarrojas, luz visible, luz ultravioleta, rayos X, y rayos gamma conforman la radiación electromagnética. En este caso, la propagación es posible sin un medio, a través del vacío. Estas ondas electromagnéticas viajan a 299,792,458 m/s en el vacío.
Sonoras — una onda mecánica que se propaga por el aire, los líquidos o los sólidos.
Ondas de
tráfico (esto es, la propagación de diferentes densidades de vehículos, etc.) — estas pueden modelarse como ondas cinemáticas como hizo Sir M. J. Lighthill
Ondas sísmicas en terremotos.
Ondas gravitacionales, que son fluctuaciones en la curvatura del espacio-tiempo predichas por la relatividad general. Estas ondas aún no han sido observadas empíricamente.

Ley de Ohm

Explicación de la ley de Ohm

La Ley de Ohm se puede entender con facilidad si se analiza un circuito donde están en serie, una
fuente de voltaje (una batería de 12 voltios) y una resistencia de 6 ohms (ohmios).

Se puede establecer una relación entre la voltaje de la batería, el valor de la resistencia y la corriente que entrega la batería y que circula a través de dicha resistencia.

Esta relación es: I = V / R y se conoce como la Ley de Ohm

Entonces la corriente que circula por el circuito (por la resistencia o resistor) es: I = 12 Voltios / 6 ohms = 2 Amperios.

De la misma manera, de la fórmula se puede despejar la tensión en función de la corriente y la resistencia, entonces la Ley de Ohm queda: V = I * R. Así si se conoce la corriente y la resistencia se puede obtener la tensión entre los terminales de la resistencia, así: V = 2 Amperios * 6 ohms = 12 V.

Al igual que en el caso anterior, si se despeja la resistencia en función del voltaje y la corriente, y se obtiene la Ley de Ohm de la forma: R = V / I.

Entonces si se conoce la tensión en la resistencia y la corriente que pasa por ella se obtiene que: R = 12 Voltios / 2 Amperios = 6 ohms

Es interesante ver que la relación entre la corriente y la tensión en una resistencia siempre es lineal y la pendiente de esta línea está directamente relacionada con el valor de la resistencia. Así, a mayor resistencia mayor pendiente. Ver gráfico abajo.

Para recordar las tres expresiones de la Ley de Ohm se utiliza el siguiente triángulo que tiene mucha similitud con las fórmulas analizadas anteriormente.


Triángulo de la ley de Ohm


V = I x R I = V / R R = V / I

Se dan 3 Casos:

- Con la resistencia fija. La corriente sigue a la tensión. Un incremento en la tensión, significa un incremento en la corriente y un incremento en la corriente significa un incremento en la tensión.

- Con el voltaje fijo. Un incremento en la corriente, causa una disminución en la resistencia y un incremento en la resistencia causa una disminución en la corriente

- Con la corriente fija. El voltaje sigue a la resistencia. Un incremento en la resistencia, causa un incremento en el voltaje y un incremento en el voltaje causa un incremento en la resistencia.

Para tres valores de resistencia diferentes, un valor en el eje vertical (corriente) corresponde un valor en el eje horizontal (voltaje).

Las pendientes de estas líneas rectas representan el valor de la resistencia.

Con ayuda de estos gráficos se puede obtener un valor de corriente para un resistor y un voltaje dados. Igualmente para un voltaje y un resistor dados se puede obtener la corriente. Ver el gráfico.

lunes, 11 de mayo de 2009

Charles Augustin de Coulomb

Charles-Augustin de Coulomb (Angoulême, Francia, 14 de junio de 1736 - París, 23 de agosto de 1806). Físico e ingeniero militar francés. Se recuerda por haber descrito de manera matemática la ley de atracción entre cargas eléctricas. En su honor la unidad de carga eléctrica lleva el nombre de coulomb (C). Entre otras teorías y estudios se le debe la teoría de la torsión recta y un análisis del fallo del terreno dentro de la Mecánica de suelos.

Fue el primer cientifico en establecer las leyes cuantitativas de la electrostática, además de realizar muchas investigaciones sobre: magnetismo, rozamiento y electricidad. Sus investigaciones científicas están recogidas en siete memorias, en las que expone teóricamente los fundamentos del magnetismo y de la electrostática. En 1777 inventó la balanza de torsión para medir la fuerza de atracción o repulsión que ejercen entre si dos cargas eléctricas, y estableció la función que liga esta fuerza con la distancia. Con este invento, culminado en 1785, Coulomb pudo establecer el principio, que rige la interacción entre las cargas eléctricas, actualmente conocido como ley de Coulomb: F = k (q q') / d^2. Coulomb también estudió la electrización por frotamiento y la polarización, e introdujo el concepto de momento magnético. El culombio o coulomb (símbolo C), es la unidad derivada del SI para la medida de la magnitud física cantidad de electricidad (carga eléctrica). Nombrada en honor de Charles-Augustin de Coulomb.

Fue educado en la École du Génie en Mézieres y se graduó en 1761 como ingeniero militar con el grado de Primer Teniente. Coulomb sirvió en las Indias Occidentales durante nueve años, donde supervisó la construcción de fortificaciones en la Martinica. En 1774, Coulomb se convirtió en un corresponsal de la Academia de Ciencias de París. Compartió el primer premio de la Academia por su artículo sobre las brújulas magnéticas y recibió también el primer premio por su trabajo clásico acerca de la fricción, un estudio que no fue superado durante 150 años.

Durante los siguientes 25 años, presentó 25 artículos a la Academia sobre electricidad, magnetismo, torsión y aplicaciones de la balanza de torsión, así como varios cientos de informes sobre ingeniería y proyectos civiles. Coulomb aprovechó plenamente los diferentes puestos que tuvo durante su vida. Por ejemplo, su experiencia como ingeniero lo llevó a investigar la resistencia de materiales y a determinar las fuerzas que afectan a objetos sobre vigas, contribuyendo de esa manera al campo de la mecánica estructural. Otro aporte de Coulomb es la llamada Teoría de Coulomb para presión de tierras, publicada en 1776, la cuál enfoca diferente el problema de empujes sobre muros y lo hace considerando las cuñas de falla, en las que actúa el muro, además toma en cuenta el ángulo de inclinación del muro y del suelo sobre el muro de contención. También hizo aportaciones en el campo de la ergonomía.

Coulomb murió en 1806, cinco años después de convertirse en presidente del Instituto de Francia (antiguamente la Academia de Ciencias de París). Su investigación sobre la electricidad y el magnetismo permitió que esta área de la física saliera de la filosofía natural tradicional y se convirtiera en una ciencia exacta. La historia lo reconoce con excelencia por su trabajo matemático sobre la electricidad conocido como "Leyes de Coulomb".

Circuito en paralelo

El circuito paralelo es una conexión donde, los bornes o terminales de entrada de todos los dispositivos (generadores, resistencias, condensadores, etc.) conectados coincidan entre sí, lo mismo que sus terminales de salida.

Dos depósitos de agua conectados en paralelo tendrán una entrada común que alimentará simultáneamente a ambos, así como una salida común que drenará a ambos a la vez. Las bombillas de iluminación de una casa forman un circuito en paralelo. Porque si una bombilla se apaga, las demás siguen encendidas.

A modo de ejemplo, en la siguiente figura se muestran varios condensadores en paralelo y el valor de su equivalente:

La configuración contraria es el circuito en serie. En el cual, si una bombilla se apaga todas las demás bombillas se apagaran también.

Circuito en serie

El circuito serie es una configuración de conexión en la que los bornes o terminales de los dispositivos (generadores, resistencias, condensadores, interruptor, etc.) se conectan secuencialmente. El terminal de salida de un dispositivo se conecta al terminal de entrada del dispositivo siguiente, por ejemplo, el terminal positivo de una pila eléctrica se conecta al terminal negativo de la pila siguiente, con lo cual entre los terminales extremos de la asociación se tiene una diferencia de potencial igual a la suma de la de ambas pilas. Esta conexión de pilas eléctricas en serie da lugar a la formación de una batería eléctrica.

Cabe anotar que la corriente que circula en un circuito serie es la misma en todos los puntos del circuito.

Circuitos: abierto, cerrado y mixto

Circuito abierto

Un circuito abierto es un circuito en el cual no circula la corriente eléctrica por estar éste interrumpido o no comunicado por medio de un conductor eléctrico. El circuito al no estar cerrado no puede tener un flujo de energía que permita a una carga o receptor de energía aprovechar el paso de la corriente eléctrica y poder cumplir un determinado trabajo. El circuito abierto puede ser representado por una resistencia o impedancia infinitamente grande.

Circuito cerrado

Es una tecnologia de video vigilancia visual diseñada para supervisar una diversidad de ambientes y actividades.

Circuito mixto

El circuito mixto es una combinación de elementos eléctricos conectados en serie y en paralelo.
Para la solución de estos circuitos se tratan de resolver primero los elementos más sencillos. Si hay dos elementos conectados en paralelo seguidos, se halla antes uno en serie que los reemplace.

Circuitos electricos

Se denomina circuito eléctrico a una serie de elementos o componentes eléctricos o electrónicos, tales como resistencias, inductancias, condensadores, fuentes, y/o dispositivos electrónicos semiconductores, conectados eléctricamente entre sí con el propósito de generar, transportar o modificar señales electrónicas o eléctricas.

En la figura podemos ver un circuito eléctrico, sencillo pero completo, al tener las partes fundamentales:

Una fuente de energía eléctrica, en este caso la pila o batería.
Una aplicación, en este caso una
lámpara incandescente.
Unos elementos de control o de maniobra, el
interruptor.
Un instrumento de medida, el
Amperímetro, que mide la intensidad de corriente.
El
cableado y conexiones que completan el circuito.

Un circuito eléctrico tiene que tener estas partes, o ser parte de ellas.

Por el tipo de señal:

•De corriente continua
•De
corriente alterna
•Mixtos

Por el tipo de régimen:

Periódico
Transitorio
•Permanente

Por el tipo de componentes:

•Eléctricos: Resistivos, inductivos, capacitivos y mixtos
•Electrónicos: digitales, analógicos y mixtos

Por su configuración:

Serie
Paralelo

Conductores y aislantes

Cuando un cuerpo neutro es electrizado, sus cargas eléctricas, bajo la acción de las fuerzas correspondientes, se redistribuyen hasta alcanzar una situación de equilibrio. Algunos cuerpos, sin embargo, ponen muchas dificultades a este movimiento de las cargas eléctricas por su interior y sólo permanece cargado el lugar en donde se depositó la carga neta. Otros, por el contrario, facilitan tal redistribución de modo que la electricidad afecta finalmente a todo el cuerpo. Los primeros se denominan aislantes y los segundos conductores.Esta diferencia de comportamiento de las sustancias respecto del desplazamiento de las cargas en su interior depende de su naturaleza íntima. Así, los átomos de las sustancias conductoras poseen electrones externos muy débilmente ligados al núcleo en un estado de semilibertad que les otorga una gran movilidad, tal es el caso de los metales. En las sustancias aislantes, sin embargo, los núcleos atómicos retienen con fuerza todos sus electrones, lo que hace que su movilidad sea escasa.

Entre los buenos conductores y los aisladores existe una gran variedad de situaciones intermedias. Es de destacar entre ellas la de los materiales semiconductores por su importancia en la fabricación de dispositivos electrónicos que son la base de la actual revolución tecnológica. En condiciones ordinarias se comportan como malos conductores, pero desde un punto de vista físico su interés radica en que se pueden alterar sus propiedades conductoras con cierta facilidad mejorando prodigiosamente su conductividad, ya sea mediante pequeños cambios en su composición, ya sea sometiéndolos a condiciones especiales, como elevada temperatura o intensa iluminación.A temperaturas cercanas al cero absoluto, ciertos metales adquieren una conductividad infinita, es decir, la resistencia al flujo de cargas se hace cero. Se trata de los superconductores. Una vez que se establece una corriente eléctrica en un superconductor, los electrones fluyen por tiempo indefinido.



Voltaje, tensión o diferencia de potencial

El voltaje, tensión o diferencia de potencial es la presión que ejerce una fuente de suministro de energía eléctrica o fuerza electromotriz (FEM) sobre las cargas eléctricas o electrones en un circuito eléctrico cerrado, para que se establezca el flujo de una corriente eléctrica.A mayor diferencia de potencial o presión que ejerza una fuente de FEM sobre las cargas eléctricas o electrones contenidos en un conductor, mayor será el voltaje o tensión existente en el circuito al que corresponda ese conductor.



Las cargas eléctricas en un circuito cerrado fluyen del polo negativo al polo positivo de la propia fuente de fuerza electromotriz.
La diferencia de potencial entre dos puntos de una fuente de FEM se manifiesta como la acumulación de cargas eléctricas negativas (iones negativos o aniones), con exceso de electrones en el polo negativo (–) y la acumulación de cargas eléctricas positivas (iones positivos o cationes), con defecto de electrones en el polo positivo (+) de la propia fuente de FEM.

A la izquierda podemos apreciar la estructura completa de un átomo de cobre (Cu) en estado "neutro", con un solo electrón girando en su última órbita y a la derecha un "ión" cobre, después que el átomo ha perdido el único electrón que posee en su órbita más externa. Debido a que en esas condiciones la carga positiva de los protones supera a las cargas negativas de los e lectrones que aún continúan girando en el resto de las órbitas, el ión se denomina en este caso "catión", por tener carga positiva.
En otras palabras, el voltaje, tensión o diferencia de potencial es el impulso que necesita una carga eléctrica para que pueda fluir por el conductor de un circuito eléctrico cerrado. Este movimiento de las cargas eléctricas por el circuito se establece a partir del polo negativo de la fuente de FEM hasta el polo positivo de la propia fuente.

Intensidad de corriente

Se denomina intensidad de corriente eléctrica a la cantidad de electrones que pasa por un conductor en la unidad de tiempo. En el Sistema Internacional de Unidades se expresa en C·s-1 (culombios sobre segundo), unidad que se denomina amperio.

El valor I de la intensidad instantánea será:





Si la intensidad permanece constante, en cuyo caso se denota Im, utilizando incrementos finitos de tiempo se puede definir como:


Si la intensidad es variable la fórmula anterior da el valor medio de la intensidad en el intervalo de tiempo considerado.
Según la
ley de Ohm, la intensidad de la corriente es igual al voltaje dividido por la resistencia que oponen los cuerpos:


Haciendo referencia a la potencia, la intensidad equivale a la raíz cuadrada de la potencia dividida por la resistencia. En un circuito que contenga varios generadores y receptores, la intensidad es igual a:





donde Σε es el sumatorio de las fuerzas electromotrices del circuito, Σε' es la suma de todas la fuerzas contraelectromotrices, ΣR es la resistencia equivalente del circuito, Σr es la suma de las resistencias internas de los generadores y Σr' es el sumatorio de las resistencias internas de los receptores.
Intensidad de corriente en un elemento de volumen: donde encontramos n como el número de cargas portadoras por unidad de volumen dV; q refiriéndose a la carga del portador; v la velocidad del portador y finalmente de como el área de la sección del elemento de volumen de conductor.

Potencial electrico

El potencial eléctrico en un punto es el trabajo que debe realizar una fuerza eléctrica (ley de Coulomb) para mover una carga positiva q desde el infinito (donde el potencial es cero) hasta ese punto, dividido por dicha carga. Dicho de otra forma, es el trabajo que debe realizar una fuerza externa para traer una carga unitaria q desde el infinito hasta el punto considerado en contra de la fuerza eléctrica, dividido por esa carga.

Considérese una carga de prueba positiva, la cual se puede utilizar para hacer el mapa de un campo eléctrico. Para tal carga de prueba localizada a una distancia r de una carga q.

Trabajo eléctrico y energía potencial eléctrica

Considérese una carga puntual q en presencia de un campo eléctrico.

Ahora bien, si se pretende mantener la partícula en equilibrio, o desplazarla a velocidad constante, se requiere de una fuerza que contrarreste el efecto de la generada por el campo eléctrico.

Partiendo de la definición clásica de trabajo, en este caso se realizará un trabajo para trasladar la carga de un punto a otro. De tal forma que al producirse un pequeño desplazamiento dl se generará un trabajo dW. Es importante resaltar que el trabajo será positivo o negativo dependiendo de cómo se realice el desplazamiento en relación con la fuerza.

Nótese que en el caso de que la fuerza no esté en la dirección del desplazamiento, sólo se debe multiplicar su componente en la dirección del movimiento.
Será considerado trabajo positivo el realizado por un agente externo al sistema carga-campo que ocasione un cambio de posición y negativo aquél que realice el campo.


Si el trabajo que se realiza en cualquier trayectoria cerrada es igual a cero, entonces se dice que estamos en presencia de un campo eléctrico conservativo.

Ahora bien, sea una carga q que recorre una determinada trayectoria en las inmediaciones de una carga Q tal como muestra la figura.

El trabajo infinitesimal es el producto escalar del vector fuerza F por el vector desplazamiento dl, tangente a la trayectoria